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Divisibility Rules and Their Explanations 

Increase Your Number Sense 

These divisibility rules apply to determining the divisibility of a positive integer (1, 2, 3, …) by another positive integer or 

0 (although the divisibility rule for 0 says not to do it!)1.   Explanations of the divisibility rules are included because 

understanding why a rule works helps you (1) to remember it and to use it correctly and (2) much more importantly, to 

deepen your knowledge of how numbers work.  Some divisors have several divisibility rules; to limit the scope of this 

document, in most cases, only one divisibility rule is given for a divisor.  A summary of the divisibility rules is included at 

the end.   

The explanations for these divisibility rules are divided into the following categories:   

Last Digits  2x   5x  10x 
Modular Arithmetic  3    9   11 
Composite Number  Composites 

Prime Number  Primes 
Other  0    1 
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Before we get to the divisibility rules, let’s establish some groundwork required for the Last Digits and Modular 

Arithmetic explanations: 

Foundations: 

1. Any integer can be rewritten as the sum of its ones + its tens + its hundreds + …and so on (for simplicity, we will 

refer to an integer’s ones, tens, hundreds, etc. as its “parts”).  For example, the integer 3784 can be rewritten as 

the sum of its parts:  3000 + 700 + 80 + 4.   

 

2. Dividing each of an integer’s parts by a divisor and summing the results gives the same result as dividing the 

integer as a whole by the divisor.  For example,  

a) 17 ÷ 4 = (10 ÷ 4) + (7 ÷ 4)  

                 4 1/4  =  2 2/4  +  1 3/4  

                 4 1/4  =  3 5/4 

                           4 1/4  =  4 1/4  

b) 326 ÷ 2 = (300 ÷ 2) + (20 ÷ 2) + (6 ÷ 2)  

                    163  =  150  +  10  +  3  

                    163  =  163  

                                                           
1
 As always, if the dividend or divisor is negative, you do the division as though both were positive and figure out the sign of the 

quotient afterwards. 
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c) 549 ÷ 9 = (500 ÷ 9) + (40 ÷ 9) + (9 ÷ 9)  

                      61  =  55 5/9  +  4 4/9  +  1  

                      61  =  60 9/9  

                      61  =  61 

 

3. An integer d is a divisor of an integer N if the remainder of N ÷ d is zero.  When we are determining divisibility, 

we don’t care how many times d goes into N; we only care if the remainder is zero.  When dividing an integer by 

parts as shown in point 2 above, divisibility means that the sum of the parts’ remainders is divisible by the 

divisor.  There are 2 ways this can happen:  Either each of the integer’s parts is evenly divisible by the divisor as 

in Case b) above (the remainders sum to 0, which is divisible by the divisor 2) or each of the integer’s parts is not 

evenly divisible by the divisor, but the sum of the remainders is as in Case c) above (5 + 4 + 0 = 9, which is 

divisible by the divisor 9).   

 

4. If we know the remainder when 1 of a place value is divided by a divisor, we know something about the 

remainder for any amount of that place value divided by that divisor.  For example, the remainder of 1000 ÷ 9 is 

1; since 2000 ÷ 9 = (2 · 1000) ÷ 9 = 2 · (1000 ÷ 9), we can conclude that the remainder of 2000 ÷ 9 is 2 times the 

remainder of 1000 ÷ 9—and it is, 2.  Sometimes when we apply this, we get a remainder that is larger than the 

divisor.  For example, since 1000 ÷ 3 has a remainder of 1, using our approach to calculate the remainder of 

5000 ÷ 3, we would calculate the remainder as 5 · 1 = 5, which is larger than 3.  We can subtract off 3s from this 

odd-looking remainder (in essence, reduce it) until we get a number less than the divisor 3 and that would be 

the “true” remainder, in this case, 5 – 3 = 2.  However, as far as divisibility rules are concerned, there’s another 

way to think about this, as the divisibility rule for 3 explains… 

 

5. If we add or subtract the divisor one or multiple times from an integer, we haven’t changed if that integer is 

divisible by the divisor.  For example, since 6 is divisible by 3, we can add or subtract one or more 3s from 6, and 

we’re guaranteed to get a number that’s divisible by 3, e.g. 6 + 3 = 9, 6 + (3 · 8) = 6 + 24 = 30, 6 – 3 = 3, and          

6 – (3 · 10) = 6 – 30 = -24.  On the other hand, since 5 is not divisible by 3, we can add or subtract one or more 3s 

from 5, and we’re guaranteed to get a number that’s not divisible by 3, e.g. 5 + 3 = 8, 5 + (3 · 8) = 5 + 24 = 29,      

5 – 3 = 2, and 5 – (3 · 10) = 5 – 30 = -25.  This may seem familiar because integer division is sometimes compared 

to repeated subtraction, i.e. counting how many times we can subtract the divisor from the dividend until a 

quantity less than the divisor remains.  For example, 21 ÷ 4 = 21 – 4 – 4 – 4 – 4 – 4 with 1 left over, so                 

21 ÷ 4 = 5 1/4 because we can subtract the divisor 4 5 times until less than 4 remains (1); notice that no matter 

how many times we subtract 4, the result is never divisible by 4 (and, to analyze this further, the result always 

has a remainder of 1 if it’s positive or a remainder of 1 – 4 = -3 if it’s negative, i.e. if we subtract “too many” 4s).  

We will use this concept that additional or fewer instances of the divisor in a number don’t affect divisibility 

several times in the Modular Arithmetic section. 

 

Notation Note:  To avoid confusion of the x multiplication symbol with the variable x, the dot (·) is used as the 

multiplication symbol in this document; for example, 3 times 2 is written as 3 · 2. 
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Last Digits Explanations 
 

 

2 ,5 ,10x x x

 

 

For x ≥ 1, an integer is divisible by 2x, 5x, or 10x if its last x digits are. 
 

 
Specifically, 
2x:    For x ≥ 1, an integer is divisible by 2x if its last x digits are divisible by 2x. 
5x:    For x ≥ 1, an integer is divisible by 5x if its last x digits are divisible by 5x. 
10x:  For x ≥ 1, an integer is divisible by 10x if its last x digits are 0. 
Note that x is an integer, as implied by “x digits” since we cannot have a fraction of a digit. 
 
Why?  Let’s analyze the base-10 (decimal) number system a little: 
 

Table 1 

Place  
value 

100,000 10,000 1000 100 10 1 

105 104 103 102 101 100 

(2 · 5)5 = 25 · 55  (2 · 5)4 = 24 · 54  (2 · 5)3 = 23 · 53  (2 · 5)2 = 22 · 52 (2 · 5)1 = 21 · 51 (2 · 5)0 = 20 · 50 

Exponent 

x  
5 4 3 2 1 0 

 
Important things to notice in Table 1: 

(1) Because 10 = 2 · 5, in each place value column, 2, 5, and 10 are all raised to the same exponent; this is why 
the divisibility rules for 2x, 5x, and 10x have the same form. 

(2) Every place value ≥ the place value in column x is a multiple of 2x, 5x, and 10x; for example, for the thousands 
column (x = 3), every place value ≥ 1000 is a multiple of 23, 53, and 103. 

(3) A consequence of the exponent x starting at 0 is that the place value column in which 2x, 5x, and 10x are 
located is always followed by x digits: 

 2x  
 5x  
10x  
  

 
                             

                  x digits 
 

For example, the ten thousands column (x = 4) where 24, 54, and 104 are located has 4 place values that 
follow it (the thousands, hundreds, tens, and ones), and the tens column (x = 1) where 21, 51, and 101 are 
located has 1 place value that follows it (the ones).   

 
Let’s examine what happens when we divide a positive integer by 2x, 5x, or 10x for x ≥ 1; we’ll do the division by dividing 
each of the integer’s parts separately as described in the Foundations section.  Because of point (2) above, the place 
values in columns x and higher will always have a remainder of 0 and won’t contribute to the sum of the remainders—in 
short, they can be ignored because they are already known to be multiples of 2x, 5x, or 10x.  The x digits in the lower 
place values (those less than the x column’s place value) are the only ones that might not be divisible by 2x, 5x, or 10x, 
and hence the only digits we need to consider to determine divisibility.   
 
For example, let’s divide the integer 123,456 by 8 = 23.  Since all place values in columns x ≥ 3 (the thousands place and 
higher) are multiples of 23, they have remainders of 0 when divided by 23; the only place values that are not guaranteed 
to be divisible by 23 are the hundreds, tens, and ones place values, so those are the ones we need to check.  In short, we 
only need to ask if 456 is divisible by 8.  We can do the division by dividing 456 as a whole by 8 or by parts as shown 
below: 
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456 = 400 + 50 + 6 

remainder 
when 

÷ 8 

 0  2  6 

 these remainders are 
not guaranteed to be 0, 

so we need to check them 
 

Since the sum of the remainders is 2 + 6 = 8, which is clearly divisible by 8, 456 is divisible by 8, which means 123,456 is 
divisible by 8. 
 
Let’s look at 2x, 5x, and 10x separately.  Remember in these discussions that x ≥ 1 for 2x, 5x, and 10x. 
 
 

2x: 
21 = 2:  To determine divisibility by 2, we only need to ask if the last digit is divisible by 2. 
22 = 4:  To determine divisibility by 4, we only need to ask if the last 2 digits are divisible by 4. 
23 = 8:  To determine divisibility by 8, we only need to ask if the last 3 digits are divisible by 8. 
24 = 16:  To determine divisibility by 16, we only need to ask if the last 4 digits are divisible by 16. 
etc. 
 
For example, to determine if 2384 is divisible by 4, we only need to ask if 84 is divisible by 4; it is, so 2384 is.  To 
determine if 2384 is divisible by 8, we only need to ask if 384 is divisible by 8; it is, so 2384 is. 
 
This rule loses practical application pretty quickly—it’s often difficult to look at a 5-digit integer and easily determine if 
it’s divisible by 32 (25).  Unless the original number is very, very large, it might be just as much trouble to carry out the 
original division as to use the divisibility rule. 
 
Let’s take a closer look at divisibility by 2: 
 

2:  An integer is divisible by 2 if it is even, i.e. its last digit is 0, 2, 4, 6, or 8. 
Why?  If you multiply any integer by 2, it will end in 0, 2, 4, 6, or 8—no other ones digits are possible.  Conversely, every 
integer that ends in 0, 2, 4, 6, or 8 is a multiple of 2. 
1 · 2 = 2 
2 · 2 = 4 
3 · 2 = 6 
4 · 2 = 8 
5 · 2 = 0 
6 · 2 = 12 
etc. 
 
 

5x: 
51 = 5:  To determine divisibility by 5, we only need to ask if the last digit is divisible by 5. 
52 = 25:  To determine divisibility by 25, we only need to ask if the last 2 digits are divisible by 25. 
53 = 125:  To determine divisibility by 125, we only need to ask if the last 3 digits are divisible by 125. 
etc. 
 
Notice that powers of 5 end in 5.  (This is different than multiples of 5, which end in either 0 or 5 as noted below.) 
 
For example, to determine if 2475 is divisible by 25, we only need to ask if 75 is divisible by 25; it is, so 2475 is.  To 
determine if 2475 is divisible by 125, we only need to ask if 475 is divisible by 125; it isn’t, so neither is 2475. 
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As with the rule for 2x, this rule also loses practical application pretty quickly—it’s often difficult to look at a 4-digit 
integer and easily determine if it’s divisible by 625 (54).  Unless the original number is very, very large, it might be just as 
much trouble to carry out the original division as to use the divisibility rule. 
 
Let’s take a closer look at divisibility by 5: 
 

5:  An integer is divisible by 5 if it ends in 0 or 5. 
Why?  If you multiply any integer by 5, it will end in either a 0 or a 5—no other ones digits are possible.  Conversely, 
every integer that ends in 0 or 5 is a multiple of 5. 
1 · 5 =   5 
2 · 5 = 10 
3 · 5 = 15 
4 · 5 = 20 
5 · 5 = 25 
etc. 
 
 

10x: 
101 = 10:  To determine divisibility by 10, we only need to ask if the last digit is 0. 
102 = 100:  To determine divisibility by 100, we only need to ask if the last 2 digits are 0. 
103 = 1000:  To determine divisibility by 1000, we only need to ask if the last 3 digits are 0. 
104 = 10,000:  To determine divisibility by 10,000, we only need to ask if the last 4 digits are 0. 
etc. 
 
When you multiply a number by the base of its number system, you in effect shift the number to the left and backfill the 
number with a zero.  For example, if you multiply a number by the base of its number system 3 times, you in effect shift 
the number to the left 3 place values and append 3 zeros to the end of it.  Since these divisibility rules apply to the    
base-10 (decimal) number system, multiplication of a number by 10 (the base) r times results in r zeros at the end of the 
number; for example, 45 · 10 · 10 · 10 = 45,000.  Conversely, if a number ends in r zeros, we know it is divisible by 10 r 
times; for example, because 700 ends in 2 zeroes, we know that it is divisible by 10 2 times:  700 ÷ 10 = 70 and               
70 ÷ 10 = 7. 
 
 

Modular Arithmetic Explanations 
 

Modular arithmetic is a great tool to develop and explain certain divisibility rules because the two disciplines share many 
characteristics.  Both modular arithmetic and divisibility rules are concerned only with the remainders of division 
problems.  Neither cares how many times an integer goes into another integer; they both only care about the 
remainder.  For example, given that 34 ÷ 8 = 4 2/8, modular arithmetic is only concerned that the remainder is 2, while 
the divisibility rule for 8 is only concerned that the remainder is nonzero.   
 
Specifically, the concepts we borrow from modular arithmetic for the explanations of these divisibility rules are 

1. the approach of examining the pattern of remainders that results when incrementing powers of a number are 
divided by a certain divisor; for our purposes, we are interested in the pattern of remainders when place values, 
i.e. powers of 10, are divided by the number we want a divisibility rule for and 

2. remainders that differ by a factor of the divisor are considered equivalent, which allows for unreduced 
remainders (see the divisibility rule for 3) and over-reduced (negative) remainders (see the divisibility rule for 
11). 

In a sense, modular arithmetic expands the ways we can represent and use remainders. 
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These explanations presume you have not encountered modular arithmetic before.  I recommend that you read the 
explanations in the order given below, i.e. the explanation for division by 9 first, then the explanation for division by 3, 
and finally the explanation for division by 11. 
 
Each explanation starts by dividing 111,111 by the given divisor; the integer 111,111 has 1 of each of the place values 
from 1 to 100,000 (enough for us to see any emerging pattern), so it is a particularly convenient number for us to use.  
As outlined in points 2 and 3 in the Foundations section, we’ll sum the remainders of each part’s division and check that 
sum for divisibility by the divisor to see if the original number is divisible by that divisor.  Also, as described in point 4 of 
the Foundations section, we’ll consider the remainder of each place value as simply being a multiple of its base place 
value’s remainder. 
 

9  

 

 

An integer is divisible by 9 if the sum of its digits is divisible by 9. 

Why?   
 

111,111 = 100,000 + 10,000 + 1000 + 100 + 10 + 1 

remainder 
when 

÷ 9 

= 1 
since  

100,000 = 
99,999 + 1 

= 
(9 · 11,111) 

+ 1 

+ 1 
since  

10,000 = 
9999 + 1 = 
(9 · 1111)  

+ 1 

+ 1 
since  

1000 =  
999 + 1 =  

(9 · 111) + 1 

+ 1 
since  
100 =  

99 + 1 =  
(9 · 11) + 1 

+ 1 
since  

10 = 9 + 1 = 
(9 · 1) + 1 

+ 
 

1 
since  

1 = 0 + 1 = 
(9 · 0) + 1 

 

This pattern continues for all place values when divided by 9:  There is always a remainder of 1.  We sum the remainders 
and check the sum for divisibility by 9:  Since the remainders sum to 6 in this case, which is not divisible by 9, 9 is not a 
divisor of 111,111.   
 
But what about for other integers—for example, 2385?  Using our approach, we get 
 

2385 = 2000 + 300 + 80 + 5 

remainder 
when 

÷ 9 

= 2 
since  

2000 = 2 · 1000,  
so the remainder 

must be 2 times the 
remainder of  

1000 ÷ 9 

+ 3 
since  

300 = 3 · 100, 
so the remainder 

must be 3 times the 
remainder of  

100 ÷ 9 

+ 8  
since 

 80 = 8 · 10, 
so the remainder 

must be 8 times the 
remainder of  

10 ÷ 9 

+ 5 
since 

5 = 5 · 1, 
so the remainder 

must be 5 times the 
remainder of  

1 ÷ 9 
 
We sum the remainders and check the sum for divisibility by 9:  2 + 3 + 8 + 5 = 18, which is divisible by 9, so 2385 is 
indeed divisible by 9. 
 
In summary, the reason this divisibility rule for 9 works is because starting with the ones place value, every base place 
value has a remainder of 1 when divided by 9 and, as outlined in the Foundations section, because (1) we can break any 
integer into its parts, divide each part separately by the divisor, and sum the results, (2) consider only the sum of the 
remainders of those operations to determine divisibility, and (3) consider each of those remainders in terms of being a 
multiple of its base place value’s remainder when divided by the divisor.  Whew, that’s a mouthful, but it just means that 
to determine divisibility we only need to look at the sum of the products of each digit multiplied by its base place value’s 
remainder.  Since each base place value’s remainder when divided by 9 is 1, we multiply each digit by 1 and then sum 
the results, which is just the sum of the digits.  If this sum of the remainders is divisible by the divisor, then so is the 
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original number.  To determine if an integer N is divisible by 9, we find that we can simply add up the digits of N and see 
if that sum is divisible by 9! Please make sure you understand this before reading further because the divisibility rules for 
3 and 11 use the same reasoning.  
 
Since this rule is only concerned with the sum of digits, it doesn’t matter what order those digits are in.  For example, we 
found that 2385 is divisible by 9, but we also found that any integer comprised of the digits 2, 3, 8, 5, and any number of 
zeroes is divisible by 9:  8352, 3285, 5238, 23,850, 80,500,030,002, etc. 
 
The divisibility rule for 9 can be applied repeatedly.  For example, suppose we are determining if 1,768,399,929,846,579 
is divisible by 9.  Using the divisibility rule, we get 
 

1 + 7 + 6 + 8 + 3 + 9 + 9 + 9 + 2 + 9 + 8 + 4 + 6 + 5 + 7 + 9 = 
1 + 2 + 3 + 4 + 5 + (2 · 6) + (2 · 7) + (2 · 8) + (5 · 9) = 
15 + 12 + 14 + 16 + 45 = 
102 

 
Since we now want to know if 102 is divisible by 9, we can simply use the 9 divisibility rule again:  1 + 0 + 2 = 3.  Since 3 is 
not divisible by 9, neither is 102, and therefore neither is 1,768,399,929,846,579. 
 
To further show the power of the 9 divisibility rule, let’s use our number sense and reconsider the addition we just did 
for 1,768,399,929,846,579, because we did way too much work!  All we want to know is if the sum of the digits is 
divisible by 9—we don’t really care what the sum is, just if 9 divides into it evenly.  Therefore, a faster way to determine 
if 1,768,399,929,846,579 is divisible by 9 is to cast out any 9 digits and 9 sums since they will divide out evenly and 
contribute nothing to our knowledge of whether the sum is divisible by 9 (we could also cast out any products of 9, but 
that’s often too much work—we only want the easy wins here).  Let’s look at the original number again and eliminate 
any 9 digits and 9 sums:  1,768,399,929,846,579.  After eliminating the 9 digits and the 9 sums (1 + 8, 2 + 7, 3 + 6, and     
4 + 5), we only need to sum the digits that are left:  8 + 6 + 7 = 21.  We can reapply the divisibility rule for 9 (2 + 1 = 3, 
which is not divisible by 9) or just realize that 21 is not divisible by 9—either way, we did a whole lot less work than the 
first time!  We worked smarter, not harder. 
 
 

3  

 

 

An integer is divisible by 3 if the sum of its digits is divisible by 3. 

Why?   
 

111,111 = 100,000 + 10,000 + 1000 + 100 + 10 + 1 

remainder 
when 

÷ 3 

= 1 
since  

100,000 = 
99,999 + 1 

= 
(3 · 33,333) 

+ 1 

+ 1 
since  

10,000 = 
9999 + 1 =  
(3 · 3333)  

+ 1 

+ 1 
since  

1000 =  
999 + 1 =  

(3 · 333) + 1 

+ 1 
since  
100 =  

99 + 1 =  
(3 · 33) + 1 

+ 1 
since  

10 = 9 + 1 = 
(3 · 3) + 1 

+ 
 

1 
since  

1 = 0 + 1 = 
(3 · 0) + 1 

 

This pattern continues for all place values when divided by 3:  There is always a remainder of 1.  We sum the remainders 
and check the sum for divisibility by 3:  Since the remainders sum to 6 in this case, which is divisible by 3, 3 is a divisor of 
111,111.   
 
But what about for other integers—for example, 2385?  Using our approach, we get 
 
 
 



8/4/2011                                                                            SaneSchool.com Page 8 
 

 

2385 = 2000 + 300 + 80 + 5 

remainder 
when 

÷ 3 

= 2 
since  

2000 = 2 · 1000,  
so the remainder 

must be 2 times the 
remainder of  

1000 ÷ 3 

+ 3 
since  

300 = 3 · 100, 
so the remainder 

must be 3 times the 
remainder of  

100 ÷ 3 

+ 8  
since 

 80 = 8 · 10, 
so the remainder 

must be 8 times the 
remainder of  

10 ÷ 3 

+ 5 
since 

5 = 5 · 1, 
so the remainder 

must be 5 times the 
remainder of  

1 ÷ 3 
 

 

Here is another way of thinking about remainders as alluded to in the Foundations section:  We can consider the 
remainders above in red to be unreduced remainders.  In much the same way we can use any convenient representation 
of one-half in an equation without changing the validity (0.5, 0.500, 1/2, 

4/8, 
5/10, etc.), as far as determining divisibility is 

concerned, we can use unreduced remainders without changing the validity.  These remainders are unreduced because 
they still have instances of the divisor in them; for example, the remainder 8 shown in red above is 2 (the reduced 
remainder) plus 2 instances of the divisor 3, i.e. 2 + 3 + 3. 
 
The key to understanding this divisibility rule is to consider the remainder of each place value as simply being a multiple 
of its base place value’s remainder.  For example, we want to consider the remainder of 40 ÷ 3 in terms of (4 · 10) ÷ 3 =  
4 · (10 ÷ 3), which means the remainder is 4 · 1 = 4, i.e. 4 times the remainder of 10 ÷ 3.  When we use the associative 
property in this way to get a multiple of the base place value’s remainder, we sometimes get an unreduced remainder, 
but as far as determining divisibility is concerned, that’s fine since additional instances of the divisor don’t affect 
divisibility. 
 
Given that we can accept remainders ≥ 3 here, we now sum the remainders and check the sum for divisibility by 3:          
2 + 3 + 8 + 5 = 18, which is divisible by 3, so 2385 is indeed divisible by 3.  (Note that this works with reduced remainders 
too:  2 + (3 – 3) + (8 – 3 – 3) + (5 – 3) = 2 + 0 + 2 + 2 = 6, which is divisible by 3.) 
 
This divisibility rule for 3 works for the same reason the divisibility rule for 9 works:  Starting with the ones place value, 
every base place value has a remainder of 1 when divided by 3 and because of the same reasons outlined in the 
Foundations section.  Again, it just means that to determine divisibility we only need to look at the sum of the products 
of each digit multiplied by its base place value’s remainder.  Since each base place value’s remainder when divided by 3 
is 1, we multiply each digit by 1 and then sum the results, which is just the sum of the digits.  If this sum of the 
remainders is divisible by the divisor, then so is the original number.  The only difference between the divisibility rule for 
3 and the divisibility rule for 9 is that here we allow unreduced remainders to gain the benefit that each of the 
remainders for a given place value is equal to the digit in that place value.  To determine if an integer N is divisible by 3, 
we find that we can simply add up the digits of N and see if that sum is divisible by 3! 
 
Since this rule is only concerned with the sum of digits, it doesn’t matter what order those digits are in.  For example, we 
found that 2385 is divisible by 3, but we also found that any integer comprised of the digits 2, 3, 8, 5, and any number of 
zeroes is divisible by 3:  8352, 3285, 5238, 23,850, 80,500,030,002, etc. 
 
The divisibility rule for 3 can be applied repeatedly.  For example, suppose we are determining if 1,768,399,929,846,579 
is divisible by 3.  Using the divisibility rule, we get 
 

1 + 7 + 6 + 8 + 3 + 9 + 9 + 9 + 2 + 9 + 8 + 4 + 6 + 5 + 7 + 9 = 
1 + 2 + 3 + 4 + 5 + (2 · 6) + (2 · 7) + (2 · 8) + (5 · 9) = 
15 + 12 + 14 + 16 + 45 = 
102 
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Since we now want to know if 102 is divisible by 3, we can simply use the 3 divisibility rule again:  1 + 0 + 2 = 3.  Since 3 is 
divisible by 3, so is 102, and therefore so is 1,768,399,929,846,579.   
 
To further show the power of the 3 divisibility rule, let’s use our number sense and reconsider the addition we just did 
for 1,768,399,929,846,579, because we did way too much work!  All we want to know is if the sum of the digits is 
divisible by 3—we don’t really care what the sum is, just if 3 divides into it evenly.  Therefore, a faster way to determine 
if 1,768,399,929,846,579 is divisible by 3 is to cast out any 3 digits, sums of 3, and products of 3 since they will divide out 
evenly and contribute nothing to our knowledge of whether the sum is divisible by 3.  Let’s look at the original number 
again and eliminate any 3 digits, sums of 3, and products of 3:  1,768,399,929,846,579.  After eliminating the 3 digits, the 
sums of 3 (1 + 2), and the products of 3 (9 digits, 6 digits, 1 + 8, 2 + 7, 4 + 5, 8 + 7), we only need to sum the digits that 
are left:  There aren’t any digits left, so the number is divisible by 3.  We did a whole lot less work than the first time!  
We worked smarter, not harder. 
 
 

11  
An integer is divisible by 11 if the sum of every other one of its digits subtracted from the sum of 
the remaining digits is divisible by 11. 

Why?   
 

111,111 = 100,000 + 10,000 + 1000 + 100 + 10 + 1 

remainder 
when 
÷ 11 

= 10 
since  

100,000 = 
99,990 + 10 = 

(11 · 9090)  
+ 10 

+ 1 
since  

10,000 = 
9999 + 1 = 
(11 · 909)  

+ 1 

+ 10 
since  

1000 = 
990 + 10 = 
(11 · 90)  

+ 10 

+ 1 
since  
100 =  

99 + 1 = 
(11 · 9) + 1 

+ 10 
since  

10 = 0 + 10 
= (11 · 0)  

+ 10 

+ 
 

1 
since  

1 = 0 + 1 = 
(11 · 0) + 1 

 

This pattern continues for all place values when divided by 11:  The remainders are always an alternating pattern of 1s 
and 10s.  Let’s think about those remainders of 10.  When we say that 12 ÷ 11 has a remainder of 1, we mean that 12 
has 1 extra beyond a whole multiple of 11; in other words, 12 has 1 too many to be a multiple of 11.  So it seems natural 
to consider 10 as having 1 too few to be a multiple of 11.  Since 1 too many is indicated by a positive remainder (+1), it 
also follows naturally that 1 too few is indicated by a negative remainder (-1).  Further consideration shows that 
negative remainders are essentially over-reduced remainders.  For example, analyzing 10 ÷ 11 again, if we keep reducing 
the remainder of 10 (which is less than the divisor, hence over-reducing), as we subtract off 11s, we get negative 
remainders:  10 – 11 = -1, -1 – 11 = -12, etc., and as far as determining divisibility is concerned, these are all perfectly fine 
(i.e., equivalent) remainders of 10 ÷ 11. 
 
With this in mind, we can now reanalyze 111,111 ÷ 11, and where we have a remainder of 10, we’ll substitute the 
equivalent remainder of 10 – 11 = -1: 
 

111,111 = 100,000 + 10,000 + 1000 + 100 + 10 + 1 

remainder 
when 
÷ 11 

= -1 
since  

100,000 = 
100,001 – 1 
= (11 · 9091) 

- 1 

+ 1 
since  

10,000 = 
9999 + 1 = 
(11 · 909)  

+ 1 

+ -1 
since  

1000 = 
1001 – 1 = 
(11 · 91) - 1 

+ 1 
since  
100 =  

99 + 1 = 
(11 · 9) + 1 

+ -1 
since  

10 = 11 – 1 
= (11 · 1)  

- 1 

+ 
 

1 
since  

1 = 0 + 1 = 
(11 · 0) + 1 

 

So now we have a wonderful pattern of alternating positive and negative 1s.  The only way for 11 to be a divisor of 
111,111 is if the sum of the remainders is divisible by 11.  Since the remainders sum to 0 in this case, which is divisible by 
11, 11 is a divisor of 111,111.   
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But what about for other integers—for example, 2385?  Using our approach, we get 
 

2385 = 2000 + 300 + 80 + 5 

remainder 
when 
÷ 11 

= -2 
since  

2000 = 2 · 1000, 
so the remainder 

must be 2 times the 
remainder of 

1000 ÷ 11 

+ 3 
since  

300 = 3 · 100, 
so the remainder 

must be 3 times the 
remainder of 

100 ÷ 11 

+ -8  
since 

 80 = 8 · 10, 
so the remainder 

must be 8 times the 
remainder of  

10 ÷ 11 

+ 5 
since 

5 = 5 · 1, 
so the remainder 

must be 5 times the 
remainder of 

1 ÷ 11 
 

We now sum the remainders and check the sum for divisibility by 11:  -2 + 3 + (-8) + 5 = -2, which is not divisible by 11, so 
2385 is not divisible by 11. 
 
In summary, the reason this divisibility rule for 11 works is because starting with the ones place value, when base place 
values are divided by 11, the remainders alternate between 1 and -1 (since we allow over-reduced remainders) and 
because of the same reasons outlined in the Foundations section.  Once again, it just means that to determine divisibility 
we only need to look at the sum of the products of each digit multiplied by its base place value’s remainder.  Since each 
base place value’s remainder when divided by 11 is ±1, we in effect sum every other digit and subtract the sum of the 
remaining digits.  If the sum of the remainders is divisible by the divisor, then so is the original number.  To determine if 
an integer N is divisible by 11, we find that we can simply add up the digits of N with alternating positive and negative 
signs and see if that sum is divisible by 11! 
 
Unlike the divisibility rules for 3 and 9, the order of the digits does matter for the divisibility rule by 11 because of the 
alternating positive and negative signs.  For example, using the digits 6, 3, 8, and 5, we find that 6385 is not divisible by 
11 (since -6 + 3 -8 + 5 = -6), but 3685 is divisible by 11 (since -3 + 6 – 8 + 5 = 0). 
 
The divisibility rule for 11 can be applied repeatedly, but because the procedure subtracts about as often as it adds, it’s 
nearly always unnecessary.  For example, suppose we are determining if 1,768,399,929,846,579 is divisible by 11.  Using 
the divisibility rule, we get -1 + 7 - 6 + 8 - 3 + 9 - 9 + 9 - 2 + 9 - 8 + 4 - 6 + 5 - 7 + 9 = 18.  We know that 18 is not divisible by 
11, but just to prove the point, we can use the 11 divisibility rule again:  -1 + 8 = 7.  Since 7 is not divisible by 11, neither 
is 18, and therefore neither is 1,768,399,929,846,579.  Even with a number maximized to get a large sum, e.g. 
90,909,090,909,090,909, the procedure yields 9 · 9 = 81, which is clearly not a multiple of 11. 
 
If all we want to know is divisibility by 11, it doesn’t matter if we alternate positive and negative signs starting with the 
ones place (which is technically the correct starting point) or starting with the highest place value.  You may find it easier 
to start with the highest place value, especially when mentally calculating this rule.  Earlier we found that 2385 is not 
divisible by 11 because -2 + 3 – 8 + 5 = -2; however, we could have alternated positive and negative signs beginning with 
the thousands place value (in essence, multiply the equation -2 + 3 – 8 + 5 by -1) and gotten 2 – 3 + 8 – 5 = 2.  Divisibility 
by 11 means that the remainders will eventually sum to zero, and 0 · -1 is still zero. 
 
The caveat with alternating positive and negative signs starting with the highest place value is if you really want to know 
what the remainder of the division is, not just if 11 divides evenly into the number.  If you have been particularly 
observant, you may have noticed that all of these remainders we’ve been getting for these modular arithmetic 
explanations are, in fact, the remainders of the original numbers divided by the divisor in question (or at least some 
form of the remainder).  For example, just above, we found that 2385 is not divisible by 11 because we calculated a 
remainder of -2.  Remember that in modular arithmetic, a negative remainder means too few to be a multiple of the 
divisor; hence, a remainder of -2 when dividing by 11 means the remainder is equivalently 2 less than 11, or 11 – 2 = 9.  
If we divide 2385 by 11, guess what remainder we get?  Yes, 9.   
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If we disregard the mathematically rigorous starting point (the ones place) for alternating positive and negative signs for 
this rule (which, again, is fine if all we want to know is if 11 divides the number evenly), we will get the negative of the 
true remainder if the original number has an even number of digits.  We just calculated an example of this:  Instead of 
getting a remainder of  -2 for 2385 ÷ 11, we got a remainder of +2 when we alternated positive and negative signs 
starting with the highest place value.  If we had really wanted to know the remainder of 2385 ÷ 11, we would’ve errored 
and said the remainder was 2, instead of 9.  In practice, we’re almost always interested in just determining divisibility, 
not in finding the actual remainder.  This is just a heads up if you ever are interested in the remainder’s actual value. 
 
 

Composite Number Explanations 
 

A composite number is a number that has factors other than 1 and itself. 
 

Compositenumbers  
An integer is divisible by a composite number divisor if it is divisible by 
the highest power of each of the composite number’s prime factors. 

Why?   
If the divisor is a composite number, we need to find its prime factorization and test for divisibility by the highest power 
of each of its prime factors—this ensures that all of an integer’s prime factors are tested.  For example, when dividing an 
integer by 20, it’s a mistake to think, “20 is 2 · 10, so I can just check if the integer is divisible by 2 and by 10.”  20’s prime 
factorization is 22 · 5 = 2 · 2 · 5.  Because 10 is not a prime number (10 = 2 · 5), checking for divisibility by 10 is the same 

as testing for divisibility by 2 and by 5 in one step; in essence, we’ve tested for 2 of 20’s prime factors:  2 2  5 .  If we 

then, in a separate step, test the integer for divisibility by 2, we’re just repeating the test for divisibility for 2 that we did 
when we tested for divisibility by 10—the 2nd 2 never gets tested.  This leads to errors:  10, 30, 50, 70, etc. are all 
divisible by 2 and by 10, but they aren’t divisible by 20.  Testing the highest power of each prime factor is the only way to 
ensure the entire composite number divisor has been tested. 
 
To illustrate, the divisibility rules for 6, 12, 72, and 343 are given below:  
 

6:  An integer is divisible by 6 if it is divisible by both 2 and 3, i.e. if it is an even number that is divisible by 3. 
Why?  Since 6’s prime factorization is 2 · 3, any integer divisible by both 2 and 3 is also divisible by 6. 
 
For example, 2385 is divisible by 3, but not by 2 (since it is not an even number); therefore, 2385 is not divisible by 6.  
2394 is an even number that is divisible by 3, so it is divisible by 6. 
 
12:  An integer is divisible by 12 if it is divisible by both 3 and 4. 
Why?  Since 12’s prime factorization is 22 · 3, any integer divisible by both 3 and 4 is also divisible by 12. 
 
For example, 2556 is divisible by 3 and by 4; therefore, 2556 is also divisible by 12. 
 

72:  An integer is divisible by 72 if it is divisible by both 8 and 9. 
Why?  Since 72’s prime factorization is 23 · 32, any integer divisible by both 8 and 9 is also divisible by 72. 
 
For example, 2556 is divisible by 9, but not by 8; therefore, 2556 is not divisible by 72. 
 

343:  An integer is divisible by 343 if it is divisible by...343 (not much help, is it?). 
Why?  Since 343 = 73, this divisibility rule resolves to a truism:  An integer is divisible by 343 if it is divisible by 343.  
Composite divisors that factor to only a prime raised to a power don’t benefit from this divisibility rule. 
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Prime Number Explanations 
 

A prime number is a number whose only factors are 1 and itself. 
 

2 5Prime numbers except and  

 

 

“Subtract that or add the complement.” 

 

******* 
For ease of reading, throughout the Prime Number Explanations section, 

“prime number” and “p” refer to any prime except 2 and 5. 
******* 

 

The general procedure to check for divisibility of integer N by prime number p (p ≠ 2, 5, as noted above) is 

1. Delete any ending zeros of N to form a new N. 
2. Multiply the last digit of N by a multiplier m and add or subtract it from the rest of N.  (How to determine m and 

whether to add or subtract is explained below.) 
3. Stop if you recognize that the result is or is not divisible by the divisor p. 
4. Repeat Steps 1 through 3 until you stop in Step 3. 

 
 

Examples 
 

 

Calculation shown in detail 
 

 

What the calculation looks like in practice 
 

For 2385 ÷ 7, N = 2385, p = 7, and m = -2: 
   
2385 
238 + (5 · -2) = 238 - 10 = 228 
22 + (8 · -2) = 22 - 16 = 6 
6 is not divisible by 7, so neither is 2385. 
 

     

 2 3 8 5 
 - 1 0  

 2 2 8  
- 1 6   

  6   
 

 

For 850,369 ÷ 13, N = 850,369, p = 13, and m = 4: 
 
850,369 
85,036 + (9 · 4) = 85,036 + 36 = 85,072 
8507 + (2 · 4) = 8507 + 8 = 8515 
851 + (5 · 4) = 851 + 20 = 871 
87 + (1 · 4) = 87 + 4 = 91 
9 + (1 · 4) = 9 + 4 = 13 
13 is divisible by 13, so 850,369 is. 

       

 8 5 0 3 6 9 
   + 3 6  

 8 5 0 7 2  
   + 8   

 8 5 1 5   
 + 2 0    

 8 7 1    
 + 4     

 9 1     
+ 4      

1 3      
       

 

 

For 374,890 ÷ 17, N = 374,890, p = 17, and m = -5: 
 
374,890 
37,489 
3748 + (9 · -5) = 3748 – 45 = 3703 
370 + (3 · -5) = 370 – 15 = 355 
35 + (5 · -5) = 35 – 25 = 10 
10 is not divisible by 17, so neither is 37,489. 
 

       

 3 7 4 8 9 0 
  - 4 5   

 3 7 0 3   
 - 1 5    

 3 5 5    
- 2 5     

 1 0     
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In some cases, the divisibility rule for prime numbers may not be any faster than just doing the original division—you 
have to decide if using this rule is worth the effort.  Also, note that unlike the modular arithmetic divisibility rules, this 
procedure does not result in the actual remainder of the original division problem. 
 

Each prime number p actually has 2 multipliers, one negative (m1) and one positive (m2).  Since m1 is negative, you can 
think of the operation as subtraction instead of addition; the rule “subtract that or add the complement” does.  The 
“subtract that” portion of the rule refers to the product of m1 times N’s ones digit (with the subtraction sign already built 
in) and the “add the complement” portion refers to the product of m2 times N’s ones digit.  As the rule states, we only 
need to use one of those.  Naturally, we want to use the easier of the 2 multipliers. 
 

How to determine the multipliers m1 and m2  
1. Determine the first multiple of the prime divisor p that ends in a 1. 
2. Delete the 1 off that multiple to give a new number k. 
3. m1 = -k and m2 = p – k 

 

Here are the calculations for the primes under 50 (excluding 2 and 5 since this rule doesn’t apply to them); I’ve 
highlighted the multipliers I think are easier to use: 
 

Prime number divisor 
p 

1st multiple  
that ends in 1 

k m1 
(negative multiplier) 

m2 
(positive multiplier) 

3 3 · 7 = 21 2 -2 3 – 2 = 1 

7 7 · 3 = 21 2 -2 7 – 2 = 5 

11 11 · 1 = 11 1 -1 11 – 1 = 10 

13 13 · 7 = 91 9 -9 13 – 9 = 4 

17 17 · 3 = 51 5 -5 17 – 5 = 12 

19 19 · 9 = 171 17 -17 19 – 17 = 2 

23 23 · 7 = 161 16 -16 23 – 16 = 7 

29 29 · 9 = 261 26 -26 29 – 26 = 3 

31 31 · 1 = 31 3 -3 31 – 3 = 28 

37 37 · 3 = 111 11 -11 31 – 11 = 20 

41 41 · 1 = 41 4 -4 41 – 4 =37 

43 43 · 7 = 301 30 -30 43 – 30 = 13 

47 47 · 3 = 141 14 -14 43 – 14 = 29 
 

(Note that here we give divisibility rules for 3 and 11 in addition to those discussed in the Modular Arithmetic section.) 
 

In the 1st example of this section, I used m1 = -2 for determining divisibility by 7; to me, that was the easier multiplier to 
use.  I could’ve used the positive multiplier m2 = 5 and gotten the same result: 

 
 

For 2385 ÷ 7, N = 2385, p = 7, and m = 5: 
   

2385 
238 + (5 · 5) = 238 + 25 = 263 
26 + (3 · 5) = 26 + 15 = 41 
41 is not divisible by 7, so neither is 2385. 
 

 

To summarize, this divisibility rule is phrased as “subtract that or add the complement” because the 2 ways to test for 
divisibility involve finding the tens and greater portion of the 1st multiple of p to end in the digit 1 and subtracting that 
times the last digit of N or adding the p’s complement of that times the last digit of N until you get a result that clearly is 
or is not divisible by p.  Since I know “that” refers to the multiplier equal to k, the slant rhyme of “subtract that” helps 
me to remember which multiplier is negative. 
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Why? 
To get an idea of why this works for prime numbers (except 2 and 5), let’s examine why the divisibility rule for 7 works.  
We begin by assuming a 3-digit integer abc (any number of digits works) is divisible by 7; abc must then be a multiple of 
7: 
 

Table 2 
General Procedure Example using 861 ( = 7 x 123) Notes 

7abc M  861 7M  (1) Assume abc is a multiple of 7 

100 10 7a b c M    100(8) 10(6) 1 7M    (2) Break abc into parts 

100 10 7a b c c M c      100(8) 10(6) 1 1 7 1M      
(3) Subtract original number’s ones digit c 

from both sides 

100 10 7a b M c    100(8) 10(6) 7 1M    (4) The left-hand side is now ab0 

100 10 7

10 10

a b M c 
  

100(8) 10(6) 7 1

10 10

M 
  

(5) Divide both sides by 10 to shift ab0 
one place to the right 

7
10

10

M c
a b


   

7 1
10(8) 6

10

M 
   (6) Simplify the left-hand side 

7

10

M c
ab




 

7 1
86

10

M 


 

(7) Further simplify the left-hand side to 
ab 

7
2

0
2

1

M
c

c
ab c


   2(1) 2(1)

7 1
86

10

M



  

(8) Subtract some quantity of c (the 
original number’s ones digit) from 
both sides  

20
2

11 0

7

0

M c
a

c
cb


  

7 1
86

10

20(1)
2(1)

10

M
 


  (9) Get a common denominator 

7

10

21
2

M
a

c
b c


  

2
6

0
2

7
8

1

1M 
  

(10) Simplify the right-hand side; notice 
that the quantity of c that we 
subtracted from both sides in Step (8) 
has ensured that the quantity of c on 
the right-hand side of this step (21c) is 
divisible by 7 

3
7

0
2

1

M
a

c
cb


  

 
 
   

 

We have shown that subtracting 
2 times c (the last digit of abc) 
from ab (the rest of the number) 
is a multiple of 7 if the original 
number abc is a multiple of 7. 

 

(11) 
3

86
10

2 7
M




 
 
 
   

Because 861 is a multiple of 7, there exists 
an integer M (123) that makes this 
equation true.  On the right-hand side,  
 

123 120
12 84

10 10

3
7 7 7    




   
   
   

 

 

which equals the left-hand side of 86 – 2. 
 
(12)  In abbreviated form using only the 

left-hand side (i.e. using the rule): 
 

  
86 2 84

8 2(4) 8 8 0

 

   
 

 

0 is divisible by 7, therefore 84 is divisible 
by 7, which means that 861 is divisible by 7. 

(11)  Factor 7 out of the right-hand side; 
notice that we can only do this if Step 
(1) was valid; if our assumption in 
Step (1) is wrong, the right-hand side 
will not be divisible by 7 because 
there was never a valid integer M 
 

(12)  Repeat this whole procedure again 
starting with ab – 2c until you 
recognize the left-hand side as 
divisible or not divisible by 7. 
 

 

This divisibility rule does not tell 
us what M is; the rule only tells us 
that IF the original number is 
divisible by the prime divisor, the 
left-hand side of this step is also 
divisible by the prime divisor.  The 
value of this rule is that we only 
need to check the left-hand side. 
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To emphasize the most important points noted above, in Step (11) we are able to factor out the prime divisor we’re 
interested in (here, 7) because  

 in Step (1) we assume the original number abc is a multiple of that divisor and  

 on the right-hand side of the equation in Step (9), ignoring the denominators, we in effect add a factor of 10 c to 
the 1 c that is already there to get a quantity of c that is a multiple of the divisor (here, 20c + 1c = 21c).   

 
The factor of 10 mentioned in the 2nd bullet is one of the 2 multipliers (m1 or m2) specific to each prime divisor p.  For     
p = 7, m1 = -2 as shown above; this multiplier is negative so that it adds to the “- c” term already on the right-hand side.  
The multiplier is always a “factor of 10” because in Step (5) we shift the ab digits to the right one place value which 
introduces a 10 in the denominator on the right-hand side, and in Step (9) we get a common denominator which results 
in the multiplier being multiplied by 10.   
 
As stated above, the first multiplier m1 is calculated to add to the 1 c on the right-hand side to result in a total quantity 
of c that is a multiple of p.  The total quantity of c we end up with is (10m1 + 1)c; hence, the total quantity of c will always 
end in the digit 1.  Since we want that total quantity of c to be divisible by p, we need the first multiple of p that ends in 
the digit 1.  We truncate the 1 off that multiple of p, and what remains is k, the factor of 10 c we need to subtract from 
both sides (see Step (8) above).  m1 = -k because the multiplier needs to be negative so that it adds to the “- c” term 
already on the right-hand side. 
 
The second multiplier m2 is calculated to subtract the 1 c on the right-hand side to result in a total quantity of c that is a 
multiple of p.  The total quantity of c we end up with is (10m2 - 1)c; hence, the total quantity of c will always end in the 
digit 9.  Since we want that total quantity of c to be divisible by p, we need to add 1 to the first multiple of p that ends in 
the digit 9 to offset the 1 c we’re going to subtract.  The result of adding 1 to a number that ends in 9 is we get a number 
that ends in 0, i.e. a factor of 10; we truncate the 0 off since m2 is calculated to be a factor of 10, and what remains is … 
p – k !  We can verify this:  Since m1 is derived from the 1st factor of p that ends in a 1 and m2 is derived from the 1st 
factor of p that ends in a 9, the sum of these 2 factors ends in a 0 and is the 1st factor of 10 p; specifically, it’s 10p. We 
already know the term that ends in 1:  10k + 1; if we subtract that from 10p, we get the term that ends in 9: 
 

1

9

1 9

9 1

9

9

9

1 1

1 9

10

10

10 (10 1)

10 10 1

10( ) 1

st

st

Let f factor of p that ends in

f factor of p that ends in

f f p

f p f

f p k

f p k

f p k





 

 

  

  

  

 

 
Hence, to get the 1st multiple of p that ends in a 9, we need to subtract 1 from the factor of 10 that’s equal to (p – k).  
The upshot of all this is once we know k, we don’t need to do the work of finding the first multiple of p that ends in a 9 
to work our way to m2; we can simply calculate m2 directly as m2 = p – k.  m2 needs to be positive so that it subtracts the 
“- c” term already on the right-hand side. 
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Examples of these calculations are shown below: 
 

Prime p 3 7 11 13 17 19 53 61 97 

k 2 2 1 9 5 17 37 6 29 

p - k 1 5 10 4 12 2 16 55 68 

f1 = 10k + 1 = 1st multiple of p that ends in 1 21 21 11 91 51 171 371 61 291 

f9 = 10(p – k) – 1 = 1st multiple of p that ends in 9 9 49 99 39 119 19 159 549 679 

10p = f1 + f9 = (10k + 1) + [10(p – k) – 1] 30 70 110 130 170 190 530 610 970 
 

Notice that we’ll always be able to find both a multiple of p that ends in 1 and a multiple of p that ends in 9 because, 
except for 2 and 5 (and this is why the rule doesn’t apply to them), all prime numbers end in the digits 1, 3, 7, or 9—and 
those 4 digits multiply to products that end in 1 and in 9.  For example, primes that end in 3 get multiplied by 7 to get 
their 1st product that ends in 1 and by 3 to get their 1st product that ends in 9. 
 
We could’ve used m2 in Table 2; as Step (13) below shows, we add (p – k)c to both sides (specifically, (7 – 2)c = 5c): 
 

7

100 10 7

100 10 7

7
10

10

7
10 (13)

10

7
10 (14)

10

7

1

5 5

50

0

(15)
1

5
10

49
5

7
0

7
5

abc M

a b c M

a b M c

M c
a b

M c
a b

M c
a b

c c

c
c

c
c

c
c

M
ab

M
ab

 

 








  

  


 


 


 



 
  

 


 This shows that adding 5 times c (the last digit of abc) to ab (the rest of the number) is a multiple of 7 if the 
original number abc is. 
 

Notice that in Step (14), on the right-hand side of the equation, we in effect subtract the 1 c that is already there from a 
factor of 10 c to get a total quantity of c that is a multiple of p (specifically, 50c – 1c = 49c) and that this is what allows us 
to factor out a 7 in Step (15) if the original number is a multiple of 7.    
 
Let’s take a closer look at this rule and the prime number 3.  m1 is calculated in the usual way:  The first multiple of 3 
that ends in a 1 is 3 · 7 = 21.  We truncate the 1, and therefore k = 2 and m1 = -k = -2.  If we use the shortcut method to 
calculate m2 as m2 = p – k, we get m2 = 3 – 2 = 1.  However, this isn’t 1 more than the first multiple of 3 to end in a 9.  If 
we calculate m2 using that method, we get m2 = (3 · 3) + 1 = 10.  Since m2 is added to the tens and greater portion of the 
number we’re testing, using m2 = 10 means adding additional instances of 3 to check for divisibility by 3; it’s as if we 
wanted to check if 6 is divisible by 3 by adding 9 to 6 and then checking if 15 is divisible by 3—adding a multiple of the 
divisor just makes the number larger and doesn’t change that number’s divisibility by the divisor.  We can subtract m2’s 
additional instances of 3 without altering its ability to determine divisibility.  We then get m2 = 10 – (3 · 3) = 1—the same 
value for m2 we get using the shortcut method of m2 = p – k.  
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Let’s look at some examples comparing the Prime Number rule for 3 with m2 = 1 and the Modular Arithmetic rule for 3: 
 

Example using 18936 Example using 34892 Example using abcde 

Prime Number rule for 
3 using m2 = 1 

Modular 
Arithmetic 
rule for 3 

Prime Number rule for 
3 using m2 = 1 

Modular 
Arithmetic 
rule for 3 

Prime Number rule for 
3 using m2 = 1* 

Modular 
Arithmetic 
rule for 3 

 

 1 8 9 3 6 
 +   6  

 1 8 9 9  
 +  9   

 1 9 8   
 + 8    

 2 7    
+ 7     

 9     
 

 

1 + 8 + 9 + 3 
+ 6 = 27 

2 + 7 = 9 

 

 3 4 8 9 2 
 +   2  

 3 4 9 1  
 +  1   

 3 5 0   
+ 5     

 8     
 

 

3 + 4 + 8 + 9 
+ 2 = 26 

2 + 6 = 8 

 

 a b c d e 
 +   e  

 a b c f  
 +  f   

 a b g   
 + g    

 a h    
+ h     

 i     
 

where 
f = d + e 
g = c + f 
h = b + g 
i = a + h 

 

Substituting back up 
the line gives 

i = a + (b + g) 
i = a + b +(c + f) 
i = a + b + c + d + e 

 

 

a + b + c + d 
+ e 

 

* With liberties such as f – i possibly having 2 digits noted. 
 

Although intermediate sums differ, the Prime Number rule for 3 using m2 = 1 ultimately results in the same value as the 
Modular Arithmetic rule for 3 (repeated as necessary and without first casting out 3s and multiples of 3).  For both rules, 
the question of divisibility hinges on the divisibility of that final value by 3.  In effect, the Prime Number rule for 3 using      
m2 = 1 and the Modular Arithmetic rule for 3 (without casting out) are the same rule!  (For speed though, the fastest 
method of determining divisibility by 3 is the Modular Arithmetic rule with casting out.) 
 
To summarize, the Prime Number rule works because whenever we use the procedure shown in Table 2 to test a 

positive integer’s divisibility by a prime divisor p (except 2 and 5), we get the term 1 110

10 10

pM d md
  where m = m1 or 

m2 and d1 = the integer’s ones digit, just like we do on the right-hand side in Steps (9) and (14) above.  The value of m 
ensures the total quantity of d1 on the right-hand side will be a multiple of p.  If our assumption that the original number 
is a multiple of p is valid, the pM term will be valid, and we’ll be able to factor out p in the last step.  If our assumption 
that the original number is a multiple of p is invalid, it was invalid to set the equation equal to pM to start, and we won’t 
be able to factor out p in the last step.  In essence, m determines the quantity of d1 we need to add to both sides of the 
equation to isolate the validity of the pM term.  As long as we guarantee a multiple of pd1 on the right-hand side, the 
validity of the whole equation falls to the validity of setting it equal to pM in the first place, i.e. “Is the integer a multiple 
of p?”—which is exactly what we set out to test.  The divisibility rule for prime numbers is just a simplification of this 
whole process; in effect, it says we only need to check the left-hand side of the final result of Table 2’s General 
Procedure, generalized for any given prime divisor (except 2 and 5) and its associated multiplier m. 
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Other Explanations 
 

0  

 

By definition, division by 0 is undefined—a mathematical no-no. 

Why?   
Division by 0 is undefined because it leads to contradictions and ill-defined conclusions: 

a) Division and multiplication are reciprocal 
operations; in other words, if c ÷ b = a, then         
a · b = c.  If we allow 5 ÷ 0 to equal some number 
n, then n · 0 would = 5—but it doesn’t (n · 0 = 0), 
so we have a contradiction. 

b) We don’t really have a good way of thinking 
about what division by 0 means.  For example, 
we understand what 1 ÷ 4 is—we might picture a 
circle divided into 4 equal parts, run a quarter 
mile lap, or notice that it’s a quarter to 8; but 
what does 1 ÷ 0 mean?  What does it mean to 
divide something into zero parts, to have one 
zeroth of something? 

c) Advanced:  As shown on the right, the graph of 
1/x (or equivalently, 1 ÷ x) has a discontinuity at 
zero.  It goes to positive infinity when 0 is 
approached from the right and to negative 
infinity when 0 is approached from the left. 

 

 

 

1  

 

All integers are divisible by 1. 

Why?   
For any integer N, N · 1 = N; therefore, every N is divisible by 1 (N ÷ 1 = N).  In other words, 1 is a factor of every integer 
N, and therefore 1 is a divisor of every integer N. 
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Summary of Divisibility Rules 
 

0 By definition, division by 0 is undefined. 

1 All integers are divisible by 1. 

2 An integer is divisible by 2 if it is even, i.e. it ends in 0, 2, 4, 6, or 8. 

3 An integer is divisible by 3 if the sum of its digits is divisible by 3. 

4 An integer is divisible by 4 if the integer formed by its tens and ones digits is divisible by 4. 

5 An integer is divisible by 5 if it ends in 0 or 5. 

6 An integer is divisible by 6 if it is an even number that is divisible by 3. 

7 
An integer is divisible by 7 if the result of multiplying the last digit by -2 and adding it to the rest of the 
number is divisible by 7. 

8 An integer is divisible by 8 if the integer formed by its hundreds, tens, and ones digits is divisible by 8. 

9 An integer is divisible by 9 if the sum of its digits is divisible by 9. 

10 An integer is divisible by 10 if it ends in at least 1 zero. 

11 
An integer is divisible by 11 if the sum of every other one of its digits subtracted from the sum of the 
remaining digits is divisible by 11. 

12 An integer is divisible by 12 if it is divisible by both 3 and 4. 

Composite 
An integer is divisible by a composite number divisor if it is divisible by the highest power of each of the 
composite number’s prime factors. 

Prime except 
2 and 5 

“Subtract that or add the complement.” 

2x For x ≥ 1, an integer is divisible by 2x if its last x digits are divisible by 2x. 

5x For x ≥ 1, an integer is divisible by 5x if its last x digits are divisible by 5x. 

10x For x ≥ 1, an integer is divisible by 10x if it ends in at least x zeroes. 

 


